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The visual system can distinguish different levels of blur
and different levels of excess sharpness. Adaptation
alters this capacity so that the adapted blur (or sharp)
level looks more like a normal, properly focused image.
Here, we describe the more general pattern of
aftereffects of blur and sharp adaptation by measuring
matching functions, using video clips from a DVD movie
as stimuli. Results show that blur and sharp adaptation
are selective: The sharpening aftereffects of blur
adaptation are strongest for blurry videos while the
blurring aftereffects of sharp adaptation are strongest for
sharp videos. Despite the spatiotemporal variability of
our adaptor and test stimuli, we found adaptation effects
similar in magnitude to previous studies using invariant
static images. A recent model of blur adaptation can be
simplified to explain the form of our data, leading us to
conclude that what we see as blur/sharp adaptation is a
consequence of narrowband contrast adaptation.

Introduction

When image details are attenuated physically by
blurring and lost to perception, the visual system
adapts so that some of the attenuated details can be
recovered. This process of blur adaptation is known to
occur over long and brief time scales. The principal
example of the former is the emmetropization of the
developing eye (Wallman & Winawer, 2004), which
consists of a change in the physical focus of the retinal
image. The latter process is entirely neural and can be
demonstrated psychophysically in a matter of seconds
(Webster, Georgeson, & Webster, 2002). The speed of
the adaptation described by Webster et al. is one of
many reasons to suppose that the process is a direct
outcome of contrast adaptation (Elliott, Georgeson, &
Webster, 2011; Ohlendorf & Schaeffel, 2009), which has
a time course on the order of seconds (Greenlee,
Georgeson, Magnussen, & Harris, 1991). Adaptation
over such brief time scales is thought to permit effective
neural representation of the current stimulus distribu-

tion given a limited response range, thus allowing for
the fact that consequent contrast distributions may be
very different—this benefit is often referred to as
normalization (Frazor & Geisler, 2006; Heeger, 1992;
Wainwright, 1999). A further link between contrast
sensation and blur adaptation has been demonstrated
through the correlation between individual contrast
sensitivity functions and blur/sharp adaptation magni-
tudes (Vera-Diaz, Kark, Woods, & Peli, 2011).

Studies of contrast adaptation using spatial two-
alternative, forced-choice matching or discrimination
methods with a blank-adapted standard (Abbonizio,
Langley, & Clifford, 2002; Blakemore, Muncey, &
Ridley, 1973; Elliott et al., 2011; Georgeson, 1985; Ross
& Speed, 1996; Snowden & Hammett, 1996) have
established that psychophysical contrast adaptation has
a retinotopically localized effect (otherwise such
experimental methods would be useless) although the
limits of this localization has never been established.
Webster et al.’s (2002) study of blur adaptation using
different images as tests and adaptors suggested
incomplete transfer of adaptation when the spatial
phase structure of the adaptor and test stimuli were
different. Vera-Diaz, Goldstein, and Peli (2008) also
found incomplete transfer of adaptation between
dissimilar adaptors and tests. Most other studies
applying the same paradigm have used similar adaptor
and test stimuli (Elliott et al., 2011; Sawides et al., 2010;
Vera-Diaz, Woods, & Peli, 2010; Webster et al., 2002).
Some studies of blur adaptation have induced adapta-
tion with optical defocus of videos or other realistic
scenery and tested its effects on blur sensitivity (Wang,
Ciuffreda, & Vasudevan, 2006), acuity (Rosenfield,
Hong, & George, 2004), or contrast sensitivity (Rajeev
& Metha, 2010) using simple stimuli. Yet it is still
unclear just how important it is for blur adaptation—or
for contrast adaptation—that test and adaptor con-
trasts have the same retinal location or spatial phase.

For blur adaptation to be useful in normal visual
experience, it should generalize across successively

Citation: Haun, A. M., & Peli, E. (2013). Adaption to blurred and sharpened video. Journal of Vision, 13(8):12, 1–14, http://www.
journalofvision.org/content/13/8/12, doi:10.1167/13.8.12.

Journal of Vision (2013) 13(8):12, 1–14 1http://www.journalofvision.org/content/13/8/12

doi: 10 .1167 /13 .8 .12 ISSN 1534-7362 � 2013 ARVOReceived April 9, 2012; published July 15, 2013

mailto:andrew_haun@meei.harvard.edu
mailto:andrew_haun@meei.harvard.edu
http://www.eri.harvard.edu/faculty/peli/index.html
http://www.eri.harvard.edu/faculty/peli/index.html
mailto:eli_peli@meei.harvard.edu
mailto:eli_peli@meei.harvard.edu


viewed images; it does not seem reasonable that the
system should have to readapt to the same level of blur
from fixation to fixation. The reason why transfer of
adaptation seems incomplete in the cases in which it has
been sought experimentally may be due to the relatively
low probability that two randomly selected scenes will
have many overlapping areas of contrast, so test
contrasts will often fall in unadapted regions of the
visual field. In normal visual experience, no point in a
scene is fixated for more than a few hundred millisec-
onds, so we should expect that if the adaptors are
spatiotemporally variable enough we should see transfer
of adaptation to any test (as in the defocus blur studies
cited above, in which transfer was seen from videos or
natural scenes to acuity or contrast sensitivity targets).

In the current study, we used a matching task
(similar to Elliott et al., 2011) to measure the effects of
blur and sharp adaptation, enabling us to measure not
only normalization (a shift in the perceived normal
toward the quality of the adaptor), but also the
aftereffects of adaptation over a range of blur and
sharp levels. In our experiments, both test and adaptor
stimuli were video clips from DVD movies that varied
within and between trials. Despite the fact that our
adaptors and tests were never the same, we measured
adaptation effects of the same magnitude as those
measured in single-pattern experiments in similar
paradigms (Elliott et al., 2011; Vera-Diaz et al., 2010;
Webster et al., 2002). We found that relative to
adaptation to normal video, adaptation to blurred or
sharpened video resulted in both a shift and a
compression of the matching functions, and adaptation
to a blank screen had a similar effect to adapting to
blurred or sharpened video. Using a quick method of
measuring blur-sharp matching functions (Lesmes,
Jeon, Lu, & Dosher, 2006), we then measured blur/
sharp adaptation in a larger number of subjects to test
the generality of the finding.

To explain the observed pattern of results, we
modified the model of blur adaptation proposed by
Elliott et al. (2011) so that it could be used to predict
the effects of blur, normal, oversharp, and blank
adaptation within our experimental design. Our anal-
ysis suggests that there is no blank-field ‘‘long-standing
normal adaptation’’ of the type invoked by Elliott et
al., and a simpler model can capture all the basic
features of blur adaptation with more complex stimuli.

General methods

Subjects

Three subjects participated in the main experiment.
S1 was the first author while S2 and S3 were naive to

the purposes of the experiment and relatively inexpe-
rienced as psychophysical observers. Nine more sub-
jects were added later; these were a mix of experienced
and inexperienced subjects, and all were naive to the
purposes of the experiment. The age range for all
subjects was 22 to 49 with a median of 27. All subjects
had normal or corrected-to-normal visual acuity.

Stimuli

Video stimuli were video segments from a DVD
movie. Fifty 3-s (72-frame) segments not containing
scene cuts were extracted, color information was
discarded, and the central 360 · 360 pixel region of each
segment was cropped from the frame and processed for
use in the experiments. While the paper was in review,
we found that we had used the wrong aspect ratio—
horizontally narrower by a factor of 1.2—to convert the
H.264 video to .avi, resulting in the videos having a
slightly squashed appearance, which had gone unnoticed
by us (but which was apparent to an observant reviewer
in the frames shown in the original version of Figure 1).
Each component in the Fourier transform of each frame
of each movie segment was multiplied by f Ds: f is the
spatial frequency of the fast Fourier transform compo-
nent, and Ds is the specified change in log-log slope of
the amplitude spectrum, ranging from�1.0 (blurred) to
þ1.0 (sharpened) in steps of 0.1. The spatial transform of
the altered spectrum was then set to have the same mean
and standard deviation (RMS contrast) as the original
frame. The unaltered s values (Ds¼ 0) of the video
frames averaged�1.46 6 .22, in the normal range for
real-world images (Bex, Solomon, & Dakin, 2009; Field,
1987; Hansen & Essock, 2005). Stimuli were displayed
on a linearized CRT display (Trinitron) set at 2.1 pixels/
mm and a 144 Hz refresh rate, viewed at 1 m, so each
video subtended H/V 9.88 of visual angle. Matlab and
the Psychophysics Toolbox extensions (Brainard, 1997;
Pelli, 1997) were used to design and run the experiments.

Procedure

The adaptation period was 30 s (10 3-s video
segments) prior to the first trial. Presentation duration
in the trial interval was 500 ms, and the subjects
responded as quickly as possible. During the response
period, the screen was blank; the next adaptor
appeared directly after the subject response. Subse-
quent trials were preceded by a 3-s readaptation (top-
up) period (the same scheme as in Vera-Diaz et al.
[2010] but shorter than the 180:6 s adapt:top-up of
Webster et al. [2002] and the 120:6 s scheme of Elliott et
al. [2011]). Stimuli in each trial consisted of a pair of 12-
frame sequences presented in the blank- and video-
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adapted regions of the display (Figure 1), selected with
a random starting point from within a randomly
selected 72-frame source segment. Within a trial,
stimuli were never drawn from the same segment (i.e.,
each trial used three different video segments). Subjects
maintained fixation on a green spot at the center of the
display and responded by indicating which of the two
trial videos seemed sharper.

Trials were blocked by an adaptor condition with
each block repeated three times by each subject.
Posture and head position were maintained with a chin
rest. In separate blocks of trials, the subject adapted to
blurred, normal, or sharpened video (Ds values of�0.5,
0.0, or þ0.5, respectively) with subject S1 adapting to
two additional levels of blur and sharp (�1.0 andþ1.0).
We devised the following scheme for interleaving
multiple standard Ds levels on both sides of the display
(video and blank adapted) so that matches were made

in both locations during the same block of trials
(illustrated in Figure 2). For each adaptor condition,
six Ds matches between the blank- and video-adapted
fields were obtained through six randomly interleaved
one-up, one-down staircases, running for 30 trials each
with a step size of Ds ¼ 0.1. Three of the staircases
varied the Ds of stimuli in the video-adapted field to
estimate matches to one of three ‘‘standard’’ Ds values
(�0.2, 0.0, þ0.2) in the blank-adapted field. The other
three staircases followed the opposite arrangement,
varying the Ds of stimuli in the blank-adapted field
paired with standards in the video-adapted field.
Subjects were instructed to choose the video that
appeared sharper. Trials thus collected were fit with
logistic functions that represented the probability that
the test stimulus was chosen as the sharper of the two
(test and standard):

Figure 1. Experimental trial design. On each trial, the subject adapted for 3 seconds (30 seconds before the first trial) by fixating a spot

between two adaptors. The video adaptor could be blurred (as shown here), sharpened, or unaltered, depending on the condition/

block. The blank adaptor was an empty mean-luminance area. After the adaptation period, two different stimulus videos appeared in

the two adapted fields for 500 ms. The subject chose one of the two stimuli as ‘‘sharper,’’ and the next adapt period began. Frames

are from Night of the Living Dead (1968), which is in the public domain; different movies were used in the experiments.
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pðDstestÞ ¼ cblur þ
1� csharp � cblur

1þ exp
�
� ðDstest � DsmatchÞ=k

� ð1Þ

The value of Dstest yielding 50% in Equation 1 was
taken as the match to the corresponding standard. The
value of k set the spread of the fitted psychometric
function. The lapse rate parameters csharp and cblur set
the upper and lower bounds for the psychometric
functions; trial blocks in which either lapse parameter
exceeded 5% were repeated and excluded from data
analysis (these were rare). Final estimates were
obtained from the full set of trial data (90 trials per
data point). This procedure resulted, for each adapting
condition, in six matches made between video-adapted
and blank-adapted regions of the visual field. These
matches fall along the line of subjective equality between
stimuli in the video-adapted and blank-adapted fields
(blue, black, and red lines as illustrated in Figure 2).

Results

Matching functions

Results for three subjects are shown in Figure 3.
Video-adapted Ds is plotted along the horizontal axis
and blank-adapted Ds along the vertical axis. Straight
lines were fitted to the matching data, with the form

Figure 3. Matching functions measured for three subjects. Different symbols represent different video adaptor conditions as

identified in the legend. Video-adapted Ds is represented on the abscissa, blank-adapted Ds on the ordinate. Increasing values on

both axes indicate increasing physical sharpness (or decreasing physical blur) with the data points indicating where stimuli have the

same apparent quality. Thin gridlines represent the standard Ds values. Solid symbols are video-adapted matches made to blank-

adapted standards and thus are located along the horizontal gridlines. Open symbols are blank-adapted matches to video-adapted

standards and are located along vertical gridlines. Error bars, when visible, are bootstrapped 68% confidence intervals (Wichmann &

Hill, 2001). Individual plots are aligned vertically to each subject’s perceived normal, estimated using the fitted lines and represented

by the dashed gray line. If it is valid to suppose that the blank-adapted field is the same in all conditions (see text), then the ordinate

axis can be understood as indicating a fixed perceptual continuum from blurry through normal (dashed gray line) to oversharp.

Figure 2. Staircase design. In one block of trials, six interleaved

staircases (horizontal and vertical arrows) controlled the Ds

values in one of two regions of the visual field. Blank-adapted

staircases (open vertical arrows) controlled the Ds of videos in

the blank-adapted field with respect to three fixed Ds standards

in the video-adapted field, and video-adapted staircases (solid

horizontal arrows) controlled the Ds of stimuli in the video-

adapted field with respect to standards in the blank-adapted

field. Solid symbols indicate video-adapted matches to blank-

adapted standards, and open symbols indicate blank-adapted

matches to video-adapted standards for three hypothetical

underlying matching functions obtained under three video

adapting conditions (thin colored lines).
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Dsblank ¼ mDsvideo þ b ð2Þ
In Equation 2, the subscripts identify the adapting
field. When the video adaptor Ds¼ 0, we assumed that
a stimulus in the video-adapted field with Ds¼ 0 should
appear normal, and Equation 2 shows that this will be
matched to a blank-adapted stimulus with Ds¼ b. The
intention of the two-field matching design is that the
blank-adapted field provides a fixed ‘‘external stan-
dard’’ to which the effects of different video-adapted
states can be compared. If we assume that a blank has
consistent adaptive properties across all video adaptor
conditions, then we can consider the vertical axis of
Figure 3 to represent a perceptual blur-normal-over-
sharp continuum running from blurry through normal
to oversharp. We can then mark out, on the vertical
axis, the blank-adapted match to the normal-adapted
normal (i.e., b when the adaptor Ds¼0) in the matching
plots: This is represented by the dashed gray horizontal
line in each panel of Figure 3. This line thus illustrates
the location of the perceived normal on the vertical
axis. The individual subject data axes in Figure 3 have
been shifted vertically so that the perceived normal is
aligned for all three subjects.

Horizontal differences between differently adapted
matching functions in Figure 3 can be understood as
changes, from one state of adaptation to another, in the
stimulus on the video-adapted axis that are necessary to
maintain a match to the perceptual quality of a
stimulus on the blank-adapted axis. These normaliza-
tion effects are measured directly in the ‘‘internal
standard’’ paradigm of Webster et al. (2002); we discuss
the relationship between the different paradigms in the
Appendix. Vertical differences between different
matching functions can be understood as changes in the
perceptual quality of a stimulus on the video-adapted
axis that result from changes in the state of adaptation;
these are often referred to as the aftereffects of
adaptation. For example, a Ds¼ 0 stimulus falls on the
‘‘perceived normal’’ line during normal adaptation
(adaptation to Ds¼ 0, black triangles) but is sharpened
(shifted upward) during blur (Ds ¼�0.5) adaptation
(blue squares). Blur-adapted matching functions were
shifted completely above the normal-adapted func-
tions, meaning that adaptation to blur made stimuli
appear sharper. This sharpening aftereffect was greater
for blurred stimuli than for sharpened stimuli, indi-
cating selective adaptation (Elliott et al., 2011). Sharp
adaptation (adaptation to Ds¼þ0.5, red circles) had
the opposite effect, shifting the matching function
downward, meaning that sharp adaptation made
stimuli appear less sharp with the blurring effect
stronger for sharpened than for blurred stimuli.

The identity line in Figure 3 (diagonal gray line) can
be taken to represent ‘‘blank matching,’’ which is where
the matches would fall if video adaptation yielded the
same perceptual effect as blank adaptation. For two of

the three subjects (S1, S2), the normal-adapted
matching functions were below the identity line (b was
negative). This suggests that for these subjects blank
adaptation was akin to blur adaptation with the
perceived quality of blank-adapted stimuli sharpened
relative to normal-adapted stimuli. For the third
subject, the blank-adapted perceived normal was not
significantly different from the video-adapted perceived
normal (the dashed gray line passed within measure-
ment error of the origin).

Individual variation in video adaptation

The slope of the matching functions (m in Equation
2) can be taken to describe a subject’s ‘‘blur-sharp gain’’
during a given adaptation state, i.e., how much of a
perceptual change results from a given physical change.
The (hypothetical) blank-adapted matching function,
by definition, has a gain of 1.0. The gains of the
matching functions in Figure 3 are plotted in Figure
4—a peak in gain for normal adaptors (the steeper
matching functions of Figure 3) is apparent for all three
subjects. The three individual gain functions are very
similar except for a vertical shift; a simple explanation
for this is that all three subjects adapted similarly to the
video adaptors but differently to the blank standard
that sets the position of the y-axis. At any rate, this
pattern makes it appear that the blur-sharp gain is
highest when the subject is adapted to an in-focus
image. We wanted to determine more conclusively
whether this normal-adapted gain peak is a general
feature of human performance in this task, and so we
obtained data from more subjects.

The method used to collect the data in Figure 3 is
time consuming: Each matching function required at

Figure 4. Vertical axis shows the perceived change in blank-

adapted Ds with perceived change in video-adapted Ds,

parameter, the blur-sharp gain. Horizontal axis shows the

adaptor Ds value. Solid symbols show slopes for regression lines

plotted against individual data in Figure 3; open symbols show

slopes measured for subject S1 using the adaptive method

described below.
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least 2 hr of testing time for completion. Conveniently,
the linearity of the matching functions gives us a simple
model of matching performance—i.e., a straight line
with offset and slope—whose parameters can be sought
strategically. We employed an adaptive algorithm to
directly measure the function parameters of interest
(Lesmes et al., 2006)—we will refer to this quick
method as ‘‘QM’’. Use of this method requires that the
model calculate the probability of a response given a
particular pair of stimuli (video- and blank-adapted).
We used the linear model of Equation 2 to set the mean
of the same logistic function used to estimate individual
matches from the original staircase data (Equation 1),
computing response probabilities with respect to the
blank-adapted field:

pðDsblankÞ

¼ 1� 2c

1þ exp
�
�
�
Dsblank � ðmDsvideo þ bÞ

�
=k
�þ c ð3Þ

Here, m is the blur-sharp gain as described above, b is
the adaptor aftereffect on a normal video-adapted
stimulus (the y-intercept of the lines in Figure 3), and
the parameter k is the spread of the psychometric
function. The normalized Ds value (see Appendix) is
equal to –b/m and denoted as b below. The expected
lapse rate c was fixed at 2%, close to the average value
of 2.4% yielded by the three subjects in the first
experiment (excluding rates for excluded data, cf.
procedure). This model, with two stimulus values and
three free model parameters, thus, has the same
dimensionality as the QuickTvC model of Lesmes et al.
(2006). Simulations applying model-matching functions
similar to those obtained in the main experiment were
used to adjust the grain of the QM to make it efficient
and accurate in estimating the parameters of interest
(Lesmes et al., 2006). Blank-adapted test values
(Dsblank) were not selected from the QM distribution,
but from a uniform distribution of Ds values ranging
from –.6 to þ.6 in steps of 0.2. This was done because
the algorithm otherwise would try to find the straight-
line model parameters by placing trials only at the most
extreme available stimulus pairs, which would limit the
interpretability of the data as ‘‘matching functions.’’
Subject S1 performed the QM task for a large number
of adaptor values (open symbols in Figure 4)—the
coherence of the results speaks to the repeatability of
the QM measurements.

Matching function slopes (m) and normalization
offsets (b) were obtained for nine additional subjects
for three adaptor conditions (Ds¼�0.5, 0.0, andþ0.5)
and are illustrated by the box and whisker plots in the
top row of Figure 5 (the other symbols are for model
data as explained in the next section). Parameter values
from the original three subjects are also included in the
data used for the box plots. The peaked-at-normal

blur-sharp gain (madaptor) pattern (Figure 5a) was
replicated for every subject: As illustrated in Figure 5c,
the ratio mDs¼0/mDs¼�.5 was always greater than 1.0, and
the ratio of mDs¼þ.5/mDs¼0 was always less than 1.0. The
normalization offset pattern (Figure 5b) was also
consistent: The differences bDs¼0� bDs¼�0.5 and
bDs¼þ0.5 � bDs¼0 were always greater than zero (Figure
5d). Psychometric function slopes k did not vary
systematically with adaptor condition and averaged
around 0.15 (not shown).

Simulating blur adaptation

Elliott et al. (2011) carried out an experiment similar
to ours using static images (spatial noise or checker-

Figure 5. (a and b) Box-and-whisker plots illustrating the

distribution of linear matching function parameters for 12

subjects (three from the original experiment shown in Figure 3,

nine with the QM). Red lines are median values; upper and

lower box bounds are upper and lower quartile values; whiskers

are values closest to 1.5 times the upper and lower quartiles;

red plus signs are outliers. Symbols are parameters from model-

matching functions (identified in the legend at top). Symbols

are spread out horizontally to improve visibility. Models EGW2

and EGW3 are discussed in the Appendix. (c and d) Illustration

of the distribution of subject-by-subject differences in each

parameter. (c) Ratios of normal-adapted to blur-adapted

function slopes (m0/m–.5) and of sharp-adapted to normal-

adapted function slopes (mþ.5/m0). The steepest matching

function was always the normal-adapted function despite

considerable variance. (d) Normalization offset differences

between adaptor conditions. More positive Ds adaptors always

had more positive offsets.
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boards in different conditions) and proposed a simple
model to explain their results. In their model (call it the
EGW), the test image is decomposed into multiple
scales (f) by band-pass filters, and the standard
deviation of each band is measured to give an estimate
of the mean linear contrast response. This gives us a
vector of contrast responses for a particular Ds, e.g.,
Cf(Ds). Adaptation is the subtraction of a constant
proportion k of the adaptor responses A from the test
responses C. The relative quality M (blurriness or
sharpness) of the test image is decoded as the log
change in adapted response with log spatial frequency f
(obtained through linear regression):

lnjCf � kAfjþ ¼Mlnfþ e ð4Þ

In Equation 4, the brackets jxjþ indicate the operation
max(x, 0) or half-wave rectification with zero adapted
responses then left out of the regression. Elliott et al.

(2011) used a small value in the max operation rather
than zero and included this in their calculations of M;
we found that this resulted in unstable and unpredict-
able model performance. The reason for this is that for
positive responses there is a relatively constant log-log
relationship between response and frequency, which
makes the linear descriptor of Equation 4 appropriate;
however, introducing a response floor causes an
artificial discontinuity in the response/frequency rela-
tionship, making the linear descriptor less appropriate
and surprisingly sensitive to arbitrary changes in the
chosen small value. The constant e is not used in the
model but could be understood as reflecting the overall
perceived contrast of the stimulus. This system is
essentially a model of multichannel contrast adaptation
with logarithmic response compression (after subtrac-
tive contrast adaptation) and a hard threshold. With
this model, the matching function between two
adapting fields A1 and A2 (e.g., blurry and blank) is the

Figure 6. Schematics for two versions of the blur-adaptation model. (a) Elliott et al.’s (2011) adaptation model (EGW) takes, as two

inputs, test (Cf) and adaptor (Af) contrasts, subtracts a fixed proportion k of the adaptor from the test, and takes the average change

in log difference with log frequency as a measure of image blur or sharpness. When the adaptor is blank, it is replaced with Ds¼ 0

contrasts (‘‘long-standing normal adaptation’’). (b) An elaborated version of the model that handles time-varying tests and adaptors.

There is one input (Cf) that varies over time. This input builds up in an adaptation term (Af), which is subtracted from the input as in

the original model. (c) Time course of the first 60 s of the experiment (bars) and an example of the buildup of adaptation (colored

lines) for the EGW3 model (starting from a zeroed adaptation state). A video-adapted field with Ds ¼þ1.0 is represented, so the

uppermost colored lines correspond to higher spatial frequency A values. Gray bars represent adaptor periods; black bars represent

test periods; blank interstices represent ISIs. Note how these correspond to the plots of A(f) in the same axes; after each adaptation

period, A(f) tends to converge because the random tests will be closer to Ds ¼ 0 than the adaptor, and A drops at all frequencies

during the ISI.
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set of stimulus pairs C1 and C2 that satisfy the
equation M(C1, A1)¼M(C2, A2). Elliott et al. found
that this model (depicted in Figure 6a), with the
parameter k set to a value around 0.4, was able to
reproduce their matching results if it was assumed that
exposure of the system to zero contrast caused the most
recent state to be held in adaptive ‘‘memory.’’

Our data are very similar to those of Elliott et al.
(2011) except that our normal-adapted matching
functions do not fall along the identity line. However,
our experiment differs in important ways that mean
that we cannot fit the EGW model analytically to our
data to test its performance, at least not while staying
true to our experimental stimuli. In Elliott et al.’s
experiments, within a condition, the test and adaptor
images were the same throughout each condition
(although in some conditions they used different
random-phase noise patterns on each trial, we would
still qualify these as having homogeneous spatial
structure within and across trials). In our experiment,
the adaptors and tests were never the same on any trial
in either their phase or amplitude spectra (even
disregarding the experiment-imposed Ds change), and
furthermore, they varied across trials. So, although test
and adaptor stimuli would have specified Ds values,
their actual s (spectral slope) values—and thus their Cf

values—were highly variable. Values of s and Cf even
varied within the video stimuli from frame to frame. To
test the model in a way that the random variation of
stimulus properties could be properly incorporated, we
used simulations of the experiment, running the model
through 15 blocks (instead of three as the human
subjects had done) of 180 trials for each of three
adaptor Ds (�0.5, 0,þ 0.5). The simulated experiments
used the same staircase design as described in the
General methods.

The simulation allows us to use random stimuli with
the model, but it does not tell us how the adaptors and
the tests should interact. To connect the two stimuli, we
used a dynamic version of the EGW model (Elliott et
al. 2011, supplemental materials) in which the adapta-
tion term is determined by a first-order differential
equation with a time constant s of 10 s (Equation 5).

At ¼ Ct � s
dA

dt
ð5Þ

The time constant value is broadly consistent with the
sparse literature on temporal dynamics of contrast
adaptation (Blakemore & Campbell, 1969; Greenlee et
al., 1991; Hammett, Snowden, & Smith, 1994), but we
chose it as a post-hoc justification of the 30:3 s
adaptation:top-up period scheme and in recognition of
the fact that most studies of contrast adaptation have
employed top-up periods longer than 3 s (the median
adapt:top-up scheme over all the studies we cite that
used this design is 120:6 s). It is worth noting that a

single time constant is certainly inadequate to describe
the time course of contrast adaptation (Greenlee et al.,
1991). Although there is an added parameter, Equation
5 can also be considered a simplification of the original
model in that there is now a single input contributing
both to adaptation and to a testable response (Figure
6b).

We incorporated a full representation of the
temporal structure of the experiment in the simulation:
an initial 30 s period of adaptation, followed by a 500
ms test interval, followed by a 500 ms blank ‘‘subject
response’’ interstimulus interval (ISI), followed by 3 s
of top-up adaptation, etc. Adaptor, test, and ISI all
contributed to the adaptation term. The response to the
test was the summed adapted test response:

Rf ¼
XT
t¼1

jCðtÞ � kAðtÞjþ ð6Þ

Note that Figure 6 and Equations 4 through 6
represent a single adapted field. It is likely that the
adaptation process takes place over a much smaller
area, but as we used a single stimulus size, we have no
information about what the scale of the process might
be.

The long-standing adaptation was implemented as
follows: first, we set A(t¼ 0) to the mean (over all 50
video clips) Ds ¼ 0 video contrast values so that the
model observer began each experiment in a state of
‘‘normal adaptation’’ (presuming that ‘‘normal,’’ in this
context, is the appearance of an unaltered DVD video
presented on a CRT display). Next, the value of the
time constant s was made dependent on the contrast
response C in a given channel, according to the
following rule:

sf ¼ 10þ 600 1� Cf

Cf þ :0001

� �
ð7Þ

So, for most contrasts (well above the small value of
.0001), s would be near the set value of 10 s, but as C
approached zero, s would increase rapidly to a very
high value closer to 10 min. Exposing this system to a
blank image—a string of zero contrasts—would cause
the adaptation state to freeze. Elliott et al. (2011)
proposed a similar implementation in the form of a step
function that sets s to infinity when the contrast
response is zero.

Elliott et al. (2011) used four oriented filters in their
model and summed across orientation after adaptation.
In our tests, we found no useful difference in model
performance between a version with oriented filters
versus a version with one isotropic filter (at each of
eight spatial frequencies), so all our subsequent
modeling used an isotropic filter (raised cosine of log
frequency with one-octave bandwidth) (Peli, 1990,
2002) for the sake of simplifying the computations.

Journal of Vision (2013) 13(8):12, 1–14 Haun & Peli 8



Finally, we added Gaussian noise with 0.1 variance to
each calculated M value. This was necessary for the
noise-stimulus simulations described below because the
amplitude spectra of these stimuli had virtually no
variance across samples; without system noise, the
simulated experiment would only be able to measure
coarsely quantized matches. The noise had no effect on
model simulations when the video contrasts were used;
the internal variance was overwhelmed by the external
variance. All the parameter values cited below (and in
the caption to Figure 7) were obtained through simple
iterative searches through the parameter spaces and
manual adjustments.

When we test this model (call it the EGW1) with
spatial noise samples for which the Ds¼ 0 stimulus has
an amplitude spectrum slope of exactly s¼�1, similar
to one of the conditions originally tested by Elliott et al.
(2011), the results are similar to theirs (with k¼ .4,
Figure 7b). The normal-adapted matching function
falls on the identity line with selectively adapted (lower
gain) functions shifted above or below by blur and
sharp adaptation. With video inputs, the model

performs similarly (Figure 7c) but differently from the
human subjects in our experiment (the mean of the
three original subjects is shown in Figure 7a). Refer
back to Figure 5 in which the matching function
parameter distributions are illustrated; model parame-
ters have been plotted in the same diagrams (circle and
diamond symbols corresponding to the first two model
results shown in Figure 7b and c). While these and most
other versions of this model do well at predicting the
pattern of normalization (the values plotted in Figure
5b), the basic version of the model pins the normal-
adapted matching function to the identity line (Figure
5a, a matching function slope of 1.0 is the blank-
adapted blur-sharp gain), thus uniformly underesti-
mating the blur-sharp gain. This is a result of the long-
standing adaptation in the EGW1, which makes blank-
adaptation nearly equivalent with normal adaptation.

Removing the long-standing adaptation by setting s
¼ 10, independent of contrast response, results in the
performance shown in Figure 7d. This model—labeled
as EGW0—does well at capturing the basic features of
our human subject data although it is rather inflexible:

Figure 7. Matching functions generated by: (a) the human subjects shown in Figure 3; (b) the dynamic version of the original EGW1

with noise stimuli and k¼ 0.4; (c) same as b but with video stimuli; (d) the EGW model (k¼ 0.4) with no long-standing adaptation

(blank-adapt to zero) and video stimuli.
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A good fit cannot be obtained to both the slopes and
the offsets by varying k, so here we show results for the
model with k ¼ 0.4, which captures the magnitude of
the normalization offsets (the down-pointing triangles
in Figure 5b) while leaving the blur-sharp gains all a
little steep (Figure 5a). With this model, it is impossible
to shift the normal-adapted Ds¼ 0 away from the
origin, so this feature of the human data (i.e., in Figure
5b, most of the normal-adapted offsets were greater
than zero) cannot be reproduced. The Appendix
describes some more speculative modifications to the
model that can produce simulated data that closely
match human performance.

Discussion

Our purpose in doing these experiments was to test
whether the blur (and sharp) adaptation effects
measured in other studies can be generalized to more
complex, realistic stimuli. We find that the effects of
adaptation to random video clips are similar in
magnitude and form to the effects of adaptation to
static, nonvarying images as measured by others
(Elliott et al., 2011; Vera-Diaz et al., 2010; Webster et
al., 2002). To a large extent, we have replicated Elliott
et al.’s recent study, in which they found that the effects
of blur and sharp adaptation were selective, with
blurred adaptors having stronger effects on blurred
tests and vice versa. They were able to explain their
results with a simple subtractive model of adaptation
(the EGW). Their model included an interesting and
crucial feature: When the model system is exposed to a
blank field, the dynamic adaptive mechanisms under-
lying blur adaptation stick in place, retaining the state
of adaptation reached before the system was exposed to
a field of zero contrast. Meanwhile, if the system is
exposed to a sequence of nonzero contrasts, it follows
these relatively quickly on a time scale of seconds. It is
difficult to reconcile this with what is known of contrast
adaptation: Detection thresholds for a target grating
will be higher after adaptation to a high-contrast
adaptor with similar spatial features as the target, and
the lowest thresholds will be obtained after adaptation
to a blank screen (Georgeson & Harris, 1984; Snowden,
1994). The decay of psychophysical adaptation to
contrast, usually measured by placing a near-threshold
target in a blank field with some variable delay after the
adaptor offset (Blakemore & Campbell, 1969; Greenlee
et al., 1991; Lorenceau, 1987), seems rapid enough to
largely eliminate any stored adaptive state within a few
tens of seconds.

So why the difference between our data and those of
Elliott et al. (2011)? Why did they require the long-
standing adaptor? It is probably not enough to suggest

that the subjects were different because none of our 12
subjects showed the same pattern of blur-sharp gain as
Elliott et al.’s three subjects. It is more likely that the
difference is in the adaptor and test stimuli. In our
simulations, the blank-adapted field, in the absence of
a long-standing adaptation, still built up a low level of
adaptation to the blank-adapted test stimuli. This test
residual tended to resemble normal adaptation simply
because the staircase design distributed a broad range
of Ds values (tests and standards) in the blank-adapted
field. In Elliott et al.’s similar experiment, this buildup
may have been much more significant if only because
the spatial structure of all the tests (random noise or
phase-reversible checkerboards) was so similar from
trial to trial. It is also possible that the decay of
adaptation is different for static or constant-phase
stimuli than for moving, random stimuli—most
contrast adaptation studies with gratings use drifting
stimuli, and we used moving adaptors and tests as
well. We know already that the strength of some types
of contrast gain control varies strongly with stimulus
speed (Meese & Holmes, 2007); perhaps the persis-
tence of contrast adaptation varies along the same
dimension, which would allow for an automatic
transition between the behavior of models EGW0 and
EGW1.

Keywords: blur adaptation, contrast adaptation,
contrast sensitivity, contrast enhancement, 1/f amplitude
spectra, individual differences
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Appendix

Comparing adaptation between internal and
external standard paradigms

The video-adapted Ds values that appear normal as a
function of adaptor Ds—normalization functions—are
plotted as open symbols in Figure A1a. These can be
estimated from the matching functions of Figure 3 as b
¼ –b/m if we assume that the perceived normal is the
dashed horizontal line in each panel of Figure 3 (i.e.,
for each adaptation condition, the perceived-normal Ds
is where the matching function intersects the perceived-
normal line). For comparison, we also measured
normalization functions with the internal-standard
method of Webster et al. (2002). The stimulus
conditions were similar to the matching experiment,
except that there was a single adapting field, centrally
fixated by subjects rather than two adapting fields

Figure A1. (a) Perceived normal represented as a function of adaptor Ds. Open symbols are the video-adapted offsets of the averaged

matching functions shown in Figure 3, indicating shifts in the perceived normal toward the adaptor Ds. Solid symbols are data from

the internal-standard (Webster et al., 2002) paradigm using video clips averaged for the same three subjects. Note that the

adaptation/normalization effect is slightly larger when measured with the internal standard method. Although small, the possible

reasons for the difference are an interesting contrast; (b) shows how the discrepancy could arise from assimilation of the internal

standard with the adaptor (illustrated by the colored arrows), so that, e.g., matching a blur-adapted test to a blurry internal standard

will result in a blurrier match (blue arrow). (c) If the blank-adapted field is influenced by the video adaptor, then it is not appropriate

to treat the ordinate as a perceptual quality axis, and the perceived-normal blank-adapted Ds will vary with adaptor condition

(double dashed line), and the measured matching functions will be closer together than they would be with a truly fixed standard

(colored arrows). (d) Simulated data from the EGW3 model described in the text; ‘‘fixed-standard’’ data emulate the internal standard

data of Figure A1a while ‘‘blank-adapt standard’’ data are estimated from the same model producing the data in Figure A2b.
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immediately flanking fixation. Subjects judged whether
test stimuli presented in the video-adapted field were
blurrier or sharper than what they knew to be ‘‘normal’’
(Vera-Diaz et al., 2008; Webster et al., 2002), and their
responses drove a one-up, one-down staircase, which
adjusted the Ds value of the test on the next trial. The
null point, at which tests were equally likely to be
judged as sharper or blurrier, was obtained by the same
method as the matching point as described in the
General methods. These points are plotted as the solid
symbols in Figure A1a. The normalization offsets
measured with the external standard (the matching
method) were slightly smaller than those measured with
the internal standard.

The discrepancy in effect size between the external-
and internal-standard methods is interesting. As
illustrated in Figure A1b, it could be that the effects
(distances along the video-adapted horizontal axis) are
inflated with the internal-standard method because of a
drift in the internal standard toward the adaptor. The
internal-standard design requires that the subject
identify stimuli as blurry or sharp relative to what they
know as normal, but it is possible that subjects may
allow their judgments to be influenced by the repeatedly
seen adaptor (e.g., by identifying a stimulus as sharp or
blurry relative to the adaptor). Figure A1b shows that if
a subject’s internal reference drifts in the direction of
the quality of the adaptor (as shown by the colored
arrows), the internal reference method could yield
inflated adaptation results (the dashed-edge arrows
extend further horizontally than the solid-edge arrows).
We had thought that this was an advantage of the
external-standard design.

However, it may be that in the external-standard
method, the effect of the video adaptor spreads
spatially into the blank-adapted field. If this is so, the
measured matching functions will be pushed closer to
the identity line (Figure A1c as illustrated by the
colored arrows) than they would have been if the
blank-adapted field were truly an independent stan-
dard. This is not a fatal problem to the external-
standard design, but it does greatly complicate our
interpretation of the results: If true, then the ordinate
axis of the plots in Figure 3 cannot be assumed to be
identical with a constant perceptual continuum as we
(and Elliott et al. [2011] in their similar study) had
intended. In particular, there will be no unique blank-
adapted Ds value that corresponds to the perceived
normal; instead, the blank-adapted perceived normal
corresponds to a different Ds depending on the adaptor
condition as illustrated by the dashed double line in
Figure A1c.

We also considered whether adaptation to the trial
stimuli in the blank-adapted field might somehow
explain this result. Although the standards were set
symmetrically around Ds¼ 0 (at�0.2, 0, andþ0.2), the
tests were determined by adaptive staircases, so they
tended to be distributed around the points of subjective
equality (to the video-adapted standards). Because
video-adapted standards would be matched by blank-
adapted tests with the quality opposite to the quality of
the adaptor (e.g., blur-adapted standards would be
matched by sharpened tests), the blank-adapted field
would tend to accumulate adaptation opposite to the
video adaptor, which would tend to increase effect
sizes. Because we found slightly reduced effect sizes in
the matching experiment relative to the internal

Figure A2. More speculative extensions of the EGW model. (a) Allowing the video adaptor to have a small (proportional) effect on the

blank-adapted field results in compression of the matching functions toward the identity line. This compression of effect size results in

the different measures of normalized blur as shown in Figure A1d, which may explain the difference in performance of our three

subjects shown in Figure A1a. (b) Adjusting the relative strength of the spread of adaptation according to spatial frequency allows the

matching functions to be shifted up or down on the y-axis so that the off-origin effects of adaptation to normal video (shown in

Figure 5d) can be reproduced.
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standard experiment, trial-phase adaptation in the
blank-adapted field cannot explain the observed
pattern of results.

Looking only at the matching experiment, the
EGW0 does well at simulating human performance
although it cannot reproduce the small shift in the
normal-adapted matching functions (Figure 5b). We
found that a low-frequency bias in the extent of the
spatial spread of adaptation suggested above would
allow the EGW model to reproduce both the off-origin
matching functions and the difference in normalization
strength between the internal- and external-standard
paradigms. The spread of adaptation from the video-
adapted to the blank-adapted field consists of setting
Cblank¼ nCvideo during the adaptation phase (refer back
to Figure 6b) with n , 1. In effect, this means that the
video adaptor acts on both adapting fields but that k in
the blank-adapted field is equal to n�k. This would
imply that adaptation is pooled over a very large area;
however, because the EGW already pools over the
entire stimulus area before affecting adaptation, this
can be considered a relatively minor adjustment. The
matching performance of this model (the EGW2 with k
¼ 0.55 and n¼ 0.25) is shown in Figures A2a and 6
(upward triangles). Two improvements are gained:
Values of n and k can be found that obtain matching
function slopes and offsets in the normal range of the
human subjects, and an explanation for the discrepancy
in offset magnitude shown in Figure A1a emerges. The

spread of adaptation into the blank-adapted field
effectively squeezes all the matching functions closer
together, so the normalization offsets are underesti-
mated. We demonstrate this after the next step.

We implemented a low-frequency bias in the spatial
spread of adaptation as n¼ 0.8/(1þ log2[ f ]) (where f is
in cycles per picture). This bias shifts all the matching
functions downward (Figure A2b, compare with Figure
A2a). We also get a realistic relative difference in
normalization strength between the blank-adapted
standard method (the matching simulation as described
above) and a ‘‘fixed-standard’’ method in which the
model was run through a simulation of the single-
adaptor (Webster et al., 2002) method (Figure A1d). So
the most successful model of blur adaptation that we
have found seems to support the notion that the
internal standard used by subjects in the single-adaptor
paradigm is indeed stable (refer back to the discussion
around Figure A1b and c) and that there may be some
form of contamination between the two stimulus fields
in the external-standard paradigm. The idea that there
is a low-frequency spread in adaptation between the
two closely placed test fields is consistent with blur
adaptation being contrast adaptation at multiple
spatial scales: Neurons that prefer lower spatial
frequencies have larger receptive field extent and must
sometimes overlap between the video- and blank-
adapted fields.
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